Cheng's Research Group

  • 2023

    191) Long,YD.; Lin,JG.; Ye,FH.; Liu,W.; Wang,D.; Cheng,QQ.; Paul,RJ.; Cheng, DJ.; Mao,BG*.; Yan,RQ.; Zhao,LJ.; Liu,D.; Liu,F*. and Hu,CG*.Tailoring the Atomic-Local Environment of Carbon Nanotube Tips for Selective H2 O2 Electrosynthesis at High Current Densities Advanced materials 2023,202303905.
    https://doi.org/10.1002/adma.202303905
    190) Cao, D.; Zhang, ZR.; Cui, YH.; Zhang, YH.; Zhang, LP.; Zeng, J*. and Cheng, DJ.*; One-Step Approach for Constructing High-Density Single-Atom Catalysts toward Overall Water Splitting at Industrial Current Densities. Angewandte Chemie International Edition 2023, 62, e202214259.
    https://doi.org/10.1002/anie.202214259
    189) Liu,J.; Xu,HX.; Zhu,JQ. and Cheng, DJ*.. Understanding the Pathway Switch of the Oxygen Reduction Reaction from Single- to Double-/Triple-Atom Catalysts: A Dual Channel for Electron Acceptance−Backdonation. Journal of the American Chemical Society 2023.
    https://doi.org/10.1021/jacsau.3c00432
    188) Guo,M.; Ma,PJ.; Wei,L.; Wang,JY.; Wang,ZW.;Zheng,K.; Cheng, DJ.; Liu,YX.; Dai,HX.; Guo,GS.; Duan,EH. and Deng,JG*.Highly Selective Activation of C–H Bond and Inhibition of C–C Bond Cleavage by Tuning Strong Oxidative Pd Sites Journal of the American Chemical Society 2023, 145, 11110-11120.
    https://doi.org/10.1021/jacs.3c00747
    187) Wang, JY.; Xu, HX.; Che, CX.; Zhu, JQ.; and Cheng, DJ.*; Rational Design of PdAg Catalysts for Acetylene Selective Hydrogenation via Structural Descriptor-based Screening Strategy. ACS Catalysis 2023, 13(1), 433-444.
    https://doi.org/10.1021/acscatal.2c05498
    186) Xia,W.; Ma,MY.; Guo,XY.; Cheng, DJ*.; Wu,DF*. and Cao,D*. Fabricating Ru Atom-Doped Novel FeP4/Fe2PO5 Heterogeneous Interface for Overall Water Splitting in Alkaline Environment. ACS Appl. Mater. Interfaces 2023, 15, 44827-44838.
    https://doi.org/10.1021/acsami.3c07326
    185) Ma,MY.; Xia,W.; Guo,XY.; Liu,WH.; Cao,D*. and Cheng, DJ*.;Constructing Ni3Se2-Nanoisland-Confined Pt1Mo1 Dual-Atom Catalyst for Efficient Hydrogen Evolution in Basic Media SMALL STRUCTURES 2023.
    https://doi.org/10.1002/sstr.202300284
    184) Cao, D.; Shao, J.; Cui, YH.; Zhang, LP. and Cheng, DJ.*; Interfacial Engineering of Copper–Nickel Selenide Nanodendrites for Enhanced Overall Water Splitting in Alkali Condition. small 2023, 2301613.
    https://doi.org/10.1002/smll.202301613
    183) Cao, D.; Huang, XY.; Zhang, HM.; Liu, WH. and Cheng, DJ.*; Constructing porous RuCu nanotubes with highly efficient alloy phase for water splitting in different pH conditions. Chemical Engineering Journal 2023, 456, 141148.
    https://doi.org/10.1016/j.cej.2022.141148
    182) Ma,MY.; Xia,W.; Liu,WH.; Guo,XY.; Cao,D*. and Cheng, DJ*.;Constructing NiMoP nanorod arrays with a highly active Ni2P/NiMoP2 interface for hydrogen evolution in 0.5 M H2SO4 and 1.0 M KOH media MATERIALS CHEMISTRY FRONTIERS 2023, 7, 4029-4039.
    https://doi.org/10.1039/d3qm00363a
    181) Ma, HW.; Wang, JY.; Zhan, XC.; Xie,Y; Sun,LM; Hu,XL; Xu,HX and Cheng, DJ*.; Identification of PdPt alloys for preferential C6 olefin hydrogenation over aromatic hydrocarbons through density functional theory and microkinetic modeling. Chem.Commun. 2023,59, 6529-6532.
    https://doi.org/10.1039/d3cc01856c
    180) Sun, JD.; Xu, HX*.; Ma, HW.; Zhan, XC.; Zhu, JQ. and Cheng, DJ*.; Isoprene selective hydrogenation using AgCu-promoted Pd nanoalloys. Faraday Discussions 2023, 242, 418-428.
    https://doi.org/10.1039/d2fd00074a

  • 2022

    179) Qiao, ZZ.; Zhang, K.; Liu, J.; Cheng, DJ.; Yu, BR.; Zhao, NN.*; Xu, FJ.*; Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nature Communications 2022, 13, 7164.
    https://doi.org/10.1038/s41467-022-34883-5
    178) Cao, D.; Hu, HX.; Li, HL.; Chen, F.; Zeng, J.* and Cheng, DJ*.; Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nature Communications 2022, 13, 5843.
    https://doi.org/10.1038/s41467-022-33589-y
    177) Guo, M.; Ma, PJ.; Wang, JY.; Xu, HX.; Zhang, K.; Cheng, DJ.; Liu, YX.; Guo, GS.; Dai, HX.; Duan, EH.; Deng, JG.*; Synergy in Au-CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angewandte Chemie International Edition 2022, 61, e202203827.
    https://doi.org/10.1002/anie.202203827
    176) Xu, H.; Xu, HX.*; Cheng, DJ.*, Resolving the Reaction Mechanism for Oxidative Hydration of Ethylene toward Ethylene Glycol by Titanosilicate Catalysts. ACS Catalysis 2022, 12, 9446-9457.
    https://doi.org/10.1021/acscatal.2c01160
    175) Zhang, HM.; Guo, XY.; Liu, WH.; Wu, DF.*; Cao, D.*;Cheng, DJ., Regulating surface composition of platinum-copper nanotubes for enhanced hydrogen evolution reaction in all pH values. Journal of Colloid and Interface Science 2022, 629, 53-62.
    https://doi.org/10.1016/j.jcis.2022.08.116
    174) Yan, JJ.; Hu, HX.; Lin, AJ*.; Cheng, DJ*. and Chang, L.; Revealing the pH-Dependent Mechanism of Nitrate Electrochemical reduction to Ammonia on Single-Atom Catalysts. Nanoscale 2022, 14, 15422-15431.
    https://doi.org/10.1039/D2NR02545K
    173) Xu, XP.; Peng, ZP.; Xu HX* and Cheng, DJ*.; Computational screening of nonmetal dopants to active MoS2 basalplane for hydrogen evolution reaction via structural descriptor. Journal of Catalysis 2022, 416, 47-57.
    https://doi.org/10.1016/j.jcat.2022.10.011
    172) Liu, N.; Cao, D.; Liu, WH.; Zhang, HM.; Zhu, YH.; Chang, L.; Wu, DF.*; Cheng, DJ.*, Constructing La-doped ultrathin Co-based nanostructured electrocatalysts for high-performance water oxidation process.International Journal of Hydrogen Energy 2022, 47 (32), 14504-14514.
    https://doi.org/10.1016/j.ijhydene.2022.02.167
    171) Liu, WH.; Zhang, HM.; Ma, MY.; Cao, D*. and Cheng, DJ*.; Constructing a Highly Active Amorphous WO3/Crystalline CoP Interface for Enhanced Hydrogen Evolution at Different pH Values. ACS Applied Energy Materials 2022, 5, 10794−10801.
    https://doi.org/10.1021/acsaem.2c01489
    170) Zhang, MJ.; Xu, HX.; Luo, YB.; Zhu, JQ.*; Cheng, DJ.*, Enhancing the catalytic performance of PdAu catalysts by W-induced strong interaction for the direct synthesis of H2O2. Catalysis Science & Technology 2022, 12, 5290-5301.
    https://pubs.rsc.org/en/content/articlelanding/2022/CY/D2CY00112H
    169) Zhang, HM.; Liu, WH.; Cao, D.*; Cheng, DJ*., Carbon-based material-supported single-atom catalysts for energy conversion. iScience 2022, 25 (6), 104367.
    https://doi.org/10.1016/j.isci.2022.104367
    168) Cheng, FP.; Cheng, JH.; Nan, Y.; Xie, Y.; Yang, TQ.; Cheng, DJ.; Zhu, JQ.*; Xu, HX.*, Enhancing oxidative hydration of ethylene towards ethylene glycol over metal-modified titanosilicate catalysts. Applied Catalysis A: General 2022, 643, 118752.
    https://doi.org/10.1016/j.apcata.2022.118752
    167) Wang, XN.; Hu, HX.*; Luo, YB. and Cheng, DJ*.; High Selective Direct Synthesis of H2O2 over Pd1@γ-Al2O3 Single-Atom Catalyst. ChemCatChem 2022, 14, e202200853.
    https://doi.org/10.1002/cctc.202200853
    166) Quirk ,N.; Cheng, DJ., Hou, F.; Frontiers of multiscale modeling and simulation. Molecular Simulation 2022, 48(10), 827.
    https://doi.org/10.1080/08927022.2022.2086342
    165) Deng, ZR.; Zhou, YC.; Zhao, LQ.; Cheng, DJ.*, Structures and structural evolution of MN (M = Pt, Ag, Au, N=2-20) from combined revised particle swarm optimization and density function theory. Molecular Simulation 2022, 48 (10), 891-901.
    https://doi.org/10.1080/08927022.2021.1974431
    164) Deng, ZR.; Zhao, LQ and Cheng, DJ*.; A high-throughput catalyst synthesis system for Ag-based catalysts. Review of Scientific Instruments 2022, 93, 114101.
    https://doi.org/10.1063/5.0104325
    163) Liu, Y.*; Jiao, XP.; Zhang, FL.; Cheng, DJ.; Qin, WS.; Efficient and selective oxidation of furfural into high-value chemicals by cobalt and nitrogen co-doped carbon. The Canasian Journal of Chenical Engineering 2022, 101(1), 354-367.
    https://doi.org/10.1002/cjce.24376

  • 2021

    162) Cao, D. 1; Xu, H. 1; Cheng, D.*, Branch-leaf-shaped CuNi@NiFeCu nanodendrites as highly efficient electrocatalysts for overall water splitting. Applied Catalysis B: Environmental 2021, 298(5), 120600.
    https://doi.org/10.1016/j.apcatb.2021.120600
    161) Cao, D. 1; Wang, J. 1; Xu, H. ; Cheng, D.*, Construction of Dual-Site Atomically Dispersed Electrocatalysts with Ru-C5 Single Atoms and Ru-O4 Nanoclusters for Accelerated Alkali Hydrogen Evolution. Small 2021, 17 (31), 2101163.
    https://onlinelibrary.wiley.com/doi/10.1002/smll.202101163
    160) Cao, D. 1; Wang, J. 1; Zhang, H.; Xu, H. *; Cheng, D.*, Growth of IrCu nanoislands with rich IrCu/Ir interfaces enables highly efficient overall water splitting in non-acidic electrolytes. Chemical Engineering Journal 2021, 416 (15), 129128.
    https://doi.org/10.1016/j.cej.2021.129128
    159) Xu, H. 1; Zhu, L. 1; Nan, Y.; Xie, Y.; Cheng, D.*, Revisit the Role of Metal Dopants in Enhancing the Selectivity of Ag-Catalyzed Ethylene Epoxidation: Optimizing Oxophilicity of Reaction Site via Cocatalytic Mechanism. ACS Catalysis 2021, 11, 3371-3383.
    https://pubs.acs.org/doi/10.1021/acscatal.0c04951
    158) Xiao, F. 1; Liu, X. 1; Sun, C.-J.; Hwang, I.; Wang, Q.; Xu, Z.; Wang, Y.; Zhu, S.; Wu, H.-w.; Wei, Z.; Zheng, L.; Cheng, D.; Gu, M.; Xu, G.-L.*; Amine, K.*; Shao, M.*, Solid-State Synthesis of Highly Dispersed Nitrogen-Coordinated Single Iron Atom Electrocatalysts for Proton Exchange Membrane Fuel Cells. Nano Letters 2021, 21 (8), 3633-3639.
    https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00702
    157) Yu, Z.; Xu, H.*;Cheng, D.*, Design of Single Atom Catalysts. Advances in Physics: X 2021, 6 (1), 1905545.
    https://www.tandfonline.com/doi/full/10.1080/23746149.2021.1905545
    156) Zhu, Y. 1; Cao, D. 1; Liu, N.; Cheng, D.*, One-step synthesis of atomic Ru doped ultra-thin Co(OH)2 nanosheets for oxygen evolution reaction in different pH values. International Journal of Hydrogen Energy 2021, 46 (44), 22832-22841.
    155) Zhang, MJ.; Luo, YB.; Wu, DF.; Li, Q.; Xu, HX.*; Cheng, DJ.*, Promoter role of tungsten in W-Pd/Al2O3 catalyst for direct synthesis of H2O2: Modification of Pd/PdO ratio. Applied Catalysis A: General 2021, 628: 118392.
    https://doi.org/10.1016/j.apcata.2021.118392
    https://www.sciencedirect.com/science/article/pii/S0360319921014373?via%3Dihub
    154) Liu, W.; Cao, D.; Cheng, D.*, Review on Synthesis and Catalytic Coupling Mechanism of Highly Active Electrocatalysts for Water Splitting. Energy Technology 2021, 9 (2), 2000855.
    https://doi.org/10.1002/ente.202000855
    153) Ma, H.; Xu, X.; Xu, H. *; Feng, H. *; Xie, Y.; Cheng, D.*, Understanding composition-dependent catalytic performance of PdAg for the hydrogenation of 1,3-butadiene to 1-butene Catalysis Communications 2021, 149 (15), 106255.
    https://doi.org/10.1016/j.catcom.2020.106255
    152) Liu, J.; Cao, D.; Xu, H.; Cheng, D.*, From double‐atom catalysts to single‐cluster catalysts: A new frontier in heterogeneous catalysis. Nano Select 2021, 2 (2), 251-270.
    https://doi.org/10.1002/nano.202000155

  • 2020

    151) Cao, D.; Xu, H.; Cheng, D.*, Construction of Defect‐Rich RhCu Nanotubes with Highly Active Rh3Cu1 Alloy Phase for Overall Water Splitting in All pH Values. Advanced Energy Materials 2020, 10 (9), 1903038.
    https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201903038
    150) Huang, X. 1; Xu, H. 1; Cao, D.; Cheng, D.*, Interface construction of P-Substituted MoS2 as efficient and robust electrocatalyst for alkaline hydrogen evolution reaction. Nano Energy 2020, 78, 105253.
    https://www.sciencedirect.com/science/article/pii/S2211285520308314
    149) Huang, X. 1; Xu, X. 1; Luan, X.; Cheng, D.*, CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 2020, 68, 104332.
    https://www.sciencedirect.com/science/article/pii/S2211285519310390
    148) Cao, D.; Wang, J.; Xu, H.; Cheng, D.*, Growth of Highly Active Amorphous RuCu Nanosheets on Cu Nanotubes for the Hydrogen Evolution Reaction in Wide pH Values. Small 2020, 16 (37), 2000924.
    https://doi.org/10.1002/smll.202000924
    147) Wu, D.; Zhang, W.; Lin, A. *; Cheng, D.*, Low Pt-Content Ternary PtNiCu Nanoparticles with Hollow Interiors and Accessible Surfaces as Enhanced Multifunctional Electrocatalysts. ACS Appl Mater Interfaces 2020, 12 (8), 9600-9608.
    https://pubs.acs.org/doi/abs/10.1021/acsami.9b20076
    146) Xu, H.; Cheng, D.*, First-principles-aided Thermodynamic Modeling of Transition-metal Heterogeneous Catalysts: A review. Green Energy & Environment 2020.
    https://www.sciencedirect.com/science/article/pii/S2468025720301060
    145) Li, L.-X.; Xie, Z.-H. *; Fernandez, C.; Wu, L.; Cheng, D.; Jiang, X.-H.; Zhong, C.-J., Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection. Electrochimica Acta 2020, 330 (10), 135186.
    https://www.sciencedirect.com/science/article/pii/S0013468619320572
    144) Wu, D.; Yang, Y.; Dai, C.; Cheng, D.*, Enhanced oxygen reduction activity of PtCu nanoparticles by morphology tuning and transition-metal doping. International Journal of Hydrogen Energy 2020, 45 (7), 4427-4434.
    https://www.sciencedirect.com/science/article/pii/S0360319919344635
    143) Xu, X.; Xu, H. *; Cheng, D.*, Identification of the Anti-triangular Etched MoS2 with Comparative Activity with Commercial Pt for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy 2020.
    https://doi.org/10.1016/j.ijhydene.2020.09.071
    142) Zhao, Z.; Xu, H.; Feng, Z.*; Zhang, Y.; Cui, M.; Cao, D.; Cheng, D.*, Design of High-Performance Co-Based Alloy Nanocatalysts for the Oxygen Reduction Reaction. Chemistry — A European Journal 2020, 26 (18),4128-4135.
    https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201904431
    141) Zhang, W.; Zhu, J. *; Cheng, D.*; Zeng, X. C. *, PtCoNi Alloy Nanoclusters for Synergistic Catalytic Oxygen Reduction Reaction. ACS Applied Nano Materials 2020, 3 (3), 2536-2544.
    https://pubs.acs.org/doi/abs/10.1021/acsanm.9b02604
    140) Zhou, Y.; Zhao, Z.; Cheng, D.*, Cluster structure prediction via revised particle-swarm optimization algorithm. Computer Physics Communications 2020, 247, 106945.
    https://www.sciencedirect.com/science/article/pii/S0010465519302966
    139) Yang, L.; Xu, H.; Liu, H.; Zeng, X.; Cheng, D.; Huang, Y.; Zheng, L.; Cao, R.; Cao, D. *, Oxygen-Reconstituted Active Species of Single-Atom Cu Catalysts for Oxygen Reduction Reaction. Research 2020, 7592023.
    https://doi.org/10.34133/2020/7593023

  • 2019

    138) Huang, X.; Xu, X.; Li, C.; Wu, D.; Cheng, D.*; Cao, D. *, Vertical CoP Nanoarray Wrapped by N,P‐Doped Carbon for Hydrogen Evolution Reaction in Both Acidic and Alkaline Conditions. Advanced Energy Materials 2019, 9 (22).
    https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201803970
    137) Yang, L.; Xu, H.; Liu, H.; Cheng, D.*; Cao, D. *, Active Site Identification and Evaluation Criteria of In Situ Grown CoTe and NiTe Nanoarrays for Hydrogen Evolution and Oxygen Evolution Reactions. Small Methods 2019, 3 (5).
    https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.201900113
    136) Zhang, J.; Xu, X.; Yang, L.; Cheng, D.*; Cao, D. *, Single‐Atom Ru Doping Induced Phase Transition of MoS2 and S Vacancy for Hydrogen Evolution Reaction. Small Methods 2019, 3 (12).
    https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.201900653
    135) Yang, Y.; Xu, H.; Cao, D. *; Zeng, X. *; Cheng, D.*, Hydrogen Production via Efficient Formic Acid Decomposition: Engineering the Surface Structure of Pd-Based Alloy Catalysts by Design. ACS Catalysis 2019, 9 (1), 781-790.
    https://pubs.acs.org/doi/10.1021/acscatal.8b03485
    134) Xu, X.; Xu, H. *; Cheng, D.*, Design of high-performance MoS2 edge supported single-metal atom bifunctional catalysts for overall water splitting via a simple equation. Nanoscale 2019, 11 (42), 20228-20237.
    https://pubs.rsc.org/en/content/articlehtml/2019/nr/c9nr06083a
    133) Zhao, Z.; Xu, H.; Gao, Y. *; Cheng, D.*, Universal description of heating-induced reshaping preference of core-shell bimetallic nanoparticles. Nanoscale 2019, 11 (3), 1386-1395.
    https://pubs.rsc.org/ko/content/articlehtml/2019/nr/c8nr08889f
    132) Zhang, W.; Deibert, D. L.; Cheng, D.*; Zeng, X. C. *, Magnetism in bimetallic PtxNiN−x clusters via cross-atomic coupling. Journal of Materials Chemistry C 2019, 7 (30), 9293-9300.
    https://pubs.rsc.org/en/content/articlehtml/2019/tc/c8tc05958f
    131) Zhu, L.; Xu, H.; Nan, Y.; Xie, Y.; Zhu, J. *; Cheng, D.*, The synergistic effect between crystal planes and promoters on Ag-catalyzed ethylene epoxidation. Applied Surface Science 2019, 476, 115-122.
    https://www.sciencedirect.com/science/article/pii/S016943321930087X
    130) Nan, Y.; Wang, Y.; Cao, D.; Yang, Y.; Cheng, D.*, Adsorption and dissociation of borohydride on different Ir-Ni alloy surfaces. Applied Surface Science 2019, 464, 162-169.
    https://www.sciencedirect.com/science/article/pii/S0169433218324620
    129) Wu, D.; Cheng, D.*, Structure-controlled synthesis of one-dimensional PdCu nanoscatalysts via a seed-mediated approach for oxygen reduction reaction. Applied Surface Science 2019, 493, 139-145.
    https://www.sciencedirect.com/science/article/pii/S0169433219320240
    128) Zhao, Z.; Kong, K.; Wang, S.; Zhou, Y.; Cheng, D.*; Wang, W.; Zeng, X. C. *; Li, H. *, Understanding Hygroscopic Nucleation of Sulfate Aerosols: Combination of Molecular Dynamics Simulation with Classical Nucleation Theory. J Phys Chem Lett 2019, 10 (5), 1126-1132.
    https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b00152
    127) Elouarzaki, K. *; Wang, Y.; Kannan, V.; Xu, H.; Cheng, D.*; Lee, J.-M. *; Fisher, A. C., Hydrogenase-Like Electrocatalytic Activation and Inactivation Mechanism by Three-Dimensional Binderless Molecular Catalyst. ACS Applied Energy Materials 2019, 2 (5), 3352-3362.
    https://pubs.acs.org/doi/abs/10.1021/acsaem.9b00203
    126) Huang, X.; Yang, Y.; Cheng, D.*, Hydrogen generation from formic acid decomposition on Pd–Cu nanoalloys. International Journal of Hydrogen Energy 2019, 44 (44), 24098-24109.
    https://www.sciencedirect.com/science/article/pii/S0360319919327454
    125) Yang, M.; Wu, D.; Cheng, D.*, Biomass-derived porous carbon supported Co CoO yolk-shell nanoparticles as enhanced multifunctional electrocatalysts. International Journal of Hydrogen Energy 2019, 44 (13), 6525-6534.
    https://www.sciencedirect.com/science/article/pii/S0360319919302873
    124) Lv, Y.; Zhu, L.; Xu, H.; Yang, L.; Liu, Z. *; Cheng, D.; Cao, X.; Yun, J.; Cao, D. *, Core/shell Template-derived Co, N-doped Carbon Bifunctional Electrocatalysts for Rechargeable Zn-air Battery. Engineered Science 2019, 7, 26-37.
    http://www.espublisher.com/journals/articledetails/140/
    123) Xu, H.; Zhu, L.; Nan, Y.; Xie, Y.; Zhu, J.; Fortunelli, A. *; Cheng, D.*, Selectivity-Driven Design of the Ag–Cu Alloys for the Ethylene Epoxidation. Industrial & Engineering Chemistry Research 2019, 58 (29), 12996-13006.
    https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b01542
    122) Xu, H.; Zhu, L.; Nan, Y.; Xie, Y.; Cheng, D.*, Revisit the Role of Chlorine in Selectivity Enhancement of Ethylene Epoxidation. Industrial & Engineering Chemistry Research 2019, 58 (47), 21403-21412.
    https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b04993
    121) Yang, C.; Wang, G. *; Liang, A. *; Yue, Y.; Peng, H.; Cheng, D., Understanding the role of Au in the selective hydrogenation of acetylene on trimetallic PdAgAu catalytic surface. Catalysis Communications 2019, 124, 41-45.
    https://doi.org/10.1016/j.catcom.2019.01.012
    120) Li, P.; Wu, D.; Dai, C.; Huang, X.; Li, C.; Yin, Z.; Zhou, S.; Lv, Z.; Cheng, D.*; Zhu, J.*; Xu, J. ; Liu, X. *, Controlled Synthesis of Copper-Doped Molybdenum Carbide Catalyst with Enhanced Activity and Stability for Hydrogen Evolution Reaction. Catalysis Letters 2019, 149 (5), 1368-1374.
    https://link.springer.com/article/10.1007/s10562-019-02695-w
    119) Ma, H.; Yang, Y.; Feng, H. *; Cheng, D.*, DFT Study of Pyrolysis Gasoline Hydrogenation on Pd(100), Pd(110) and Pd(111) Surfaces. Catalysis Letters 2019, 149 (8), 2226-2233.
    https://link.springer.com/article/10.1007/s10562-019-02780-0
    118) Yang, Y.; Zhao, Z.; Zhu, J. *; Cheng, D.*, Effect of Size and Composition on the Structural Stability of Pt–Ni Nanoalloys. Journal of Cluster Science 2019, 31 (3), 609-614.
    https://link.springer.com/article/10.1007/s10876-019-01502-1
    117) Che, C.; Xu, H. *; Wen, H.; Gou, G.; Cheng, D.*, Theoretical Study on the Structural, Thermal and Phase Stability of Pt–Cu Alloy Clusters. Journal of Cluster Science 2019, 31 (3), 615-626.
    https://link.springer.com/article/10.1007/s10876-019-01753-y

  • 2018

    116) Elouarzaki, K.; Cheng, D.; Fisher, A. C.; Lee, J.-M. *, Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells. Nature Energy 2018, 3 (7), 574-581.
    https://www.nature.com/articles/s41560-018-0166-4
    115) Xu, H.; Cheng, D.*; Cao, D. *; Zeng, X. C. *, A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis 2018, 1 (5), 339-348.
    https://doi.org/10.1038/s41929-018-0063-z
    114) Huang, Y.; Hu, J.; Xu, H.; Bian, W.; Ge, J.; Zang, D.; Cheng, D.*; Lv, Y.; Zhang, C. *; Gu, J. *; Wei, Y. *, Fine Tuning Electronic Structure of Catalysts through Atomic Engineering for Enhanced Hydrogen Evolution. Advanced Energy Materials 2018, 8 (24), 1800789.
    https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201800789
    113) Wang, Z.; Li, Q.; Xu, H.; Dahl-Petersen, C.; Yang, Q.; Cheng, D.; Cao, D.; Besenbacher, F.; Lauritsen, J. V.; Helveg, S.; Dong, M. *, Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 2018, 49, 634-643.
    https://www.sciencedirect.com/science/article/pii/S2211285518302970
    112) Xu, H.; Cheng, D.*; Gao, Y. *; Zeng, X. C. *, Assessment of Catalytic Activities of Gold Nanoclusters with Simple Structure Descriptors. ACS Catalysis 2018, 8 (10), 9702-9710.
    https://pubs.acs.org/doi/10.1021/acscatal.8b02423
    111) Yang, L.1; Cheng, D.1; Xu, H.; Zeng, X.; Wan, X.; Shui, J.; Xiang, Z.; Cao, D. *, Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc Natl Acad Sci U S A 2018, 115 (26), 6626-6631.
    http://dx.doi.org/10.1073/pnas.1800771115
    110) Chang, L. *; Cheng, D.*; Sementa, L. *; Fortunelli, A. *, Hydrogen evolution reaction (HER) on Au@Ag ultrananoclusters as electro-catalysts. Nanoscale 2018, 10 (37), 17730-17737.
    https://pubs.rsc.org/en/content/articlelanding/2018/NR/C8NR06105J#!divAbstract
    109) Chang, L.; Baseggio, O.; Sementa, L.; Cheng, D.*; Fronzoni, G.; Toffoli, D. *; Apra, E. *; Stener, M. *; Fortunelli, A. *, Individual Component Map of Rotatory Strength and Rotatory Strength Density Plots As Analysis Tools of Circular Dichroism Spectra of Complex Systems. J Chem Theory Comput 2018, 14 (7), 3703-3714.
    https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00250
    108) Huang, Y.; Wu, D. *; Cao, D.; Cheng, D.*, Facile preparation of biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy 2018, 43 (18), 8611-8622.
    http://doi.org/10.1016/j.ijhydene.2018.03.136
    107) Yu, H.; Yang, L.; Cheng, D.*; Cao, D., Zeolitic-imidazolate Framework (ZIF)@ZnCo-ZIF Core-shell Template Derived Co, N-doped Carbon Catalysts for Oxygen Reduction Reaction. Engineered Science 2018, 3, 54-61.
    http://www.espublisher.com/journals/articledetails/23/
    106) Wu, D.; Zhang, X.; Zhu, J.; Cheng, D.*, Concerted Catalysis on Tanghulu-like Cu@Zeolitic Imidazolate Framework-8 (ZIF-8) Nanowires with Tuning Catalytic Performances for 4-nitrophenol Reduction. Engineered Science 2018, 2, 49-56.
    http://dx.doi.org/10.30919/es8d718
    105) Yang, Y.; Dai, C.; Wu, D.; Liu, Z. *; Cheng, D.*, The Effect of Size on Oxygen Reduction Reaction Activity of PdCu Bimetallic Nanoparticles. ChemElectroChem 2018, 5(18), 2571-2576.
    https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/celc.201800332
    104) Li, Z.; Zhu, L.; Chen, J.-F. ; Cheng, D.*, Enhanced Ethylene Oxide Selectivity by Cu and Re Dual-Promoted Ag Catalysts. Industrial & Engineering Chemistry Research 2018, 57 (12), 4180-4185.
    http://doi.org/10.1021/acs.iecr.7b04291
    103) Lian, X.; Niu, M.; Huang, Y. *; Cheng, D.*, MoS2-CdS heterojunction with enhanced photocatalytic activity: A first principles study. Journal of Physics and Chemistry of Solids 2018, 120, 52-56.
    https://doi.org/10.1016/j.jpcs.2018.04.020
    102) Miao, X.-P. *; Cheng, D.*-J.; Dai, Y.-D.; Meng, Y.; Li, X.-Y. *, Origin of Modulus Improvement for Epoxide-terminated Hyperbranched Poly(ether sulphone)/DGEBA/TETA Systems. Chinese Journal of Polymer Science 2018, 36 (8), 991-998.
    http://doi.org/10.1007/s10118-018-2114-y
    101) Zhu, L.; Xu, H.; Nan, Y.; Zhu, J. *; Cheng, D.*, Facet-dependent diffusion of atomic oxygen on Ag surfaces. Computational Materials Science 2018, 155, 17-27.
    https://linkinghub.elsevier.com/retrieve/pii/S0927025618305500
    100) Yang, Y.; Yu, H.; Cai, Y.; Ferrando, R.; Cheng, D.*, Origin of enhanced stability and oxygen adsorption capacity of medium-sized Pt-Ni nanoclusters. J Phys Condens Matter 2018, 30 (28), 285503.
    http://iopscience.iop.org/article/10.1088/1361-648X/aaca09/meta#

  • 2017

    99) Xu, H.; Cheng, D.*; Gao, Y. *, Design of High-Performance Pd-Based Alloy Nanocatalysts for Direct Synthesis of H2O2. ACS Catalysis 2017, 7 (3), 2164-2170.
    https://pubs.acs.org/doi/10.1021/acscatal.6b02871
    98) Zhu, L.; Zhang, W.; Zhu, J. *; Cheng, D.*, Ni (111)-supported graphene as a potential catalyst for high-efficient CO oxidation. Carbon 2017, 116, 201-209.
    https://linkinghub.elsevier.com/retrieve/pii/S0008622317300933
    97) Wu, D.; Zhang, W.; Cheng, D.*, Facile Synthesis of Cu/NiCu Electrocatalysts Integrating Alloy, Core-Shell, and One-Dimensional Structures for Efficient Methanol Oxidation Reaction. ACS Appl Mater Interfaces 2017, 9 (23), 19843-19851.
    https://pubs.acs.org/doi/10.1021/acsami.7b03876
    96) Shan, A.; Chen, C. *; Zhang, W.; Cheng, D.*; Shen, X.; Yu, R. *; Wang, R. *, Giant enhancement and anomalous temperature dependence of magnetism in monodispersed NiPt2 nanoparticles. Nano Research 2017, 10, 3238–3247.
    https://link.springer.com/article/10.1007%2Fs12274-017-1643-y
    95) Yang, C.; Chen, J.-F.; Zeng, X. *; Cheng, D.*, Enhanced photochemical performance of hexagonal WO3 by metal-assisted S–O coupling for solar-driven water splitting. Science China Materials 2017, 61 (1), 91-100.
    https://link.springer.com/article/10.1007%2Fs40843-017-9126-1
    94) Huang, X.; Wu, D.; Cheng, D.*, Porous Co2P nanowires as high efficient bifunctional catalysts for 4-nitrophenol reduction and sodium borohydride hydrolysis. J Colloid Interface Sci 2017, 507, 429-436.
    https://linkinghub.elsevier.com/retrieve/pii/S0021979717309293
    93) Dai, C.; Yang, Y.; Zhao, Z.; Fisher, A.; Liu, Z. *; Cheng, D.*, From mixed to three-layer core/shell PtCu nanoparticles: ligand-induced surface segregation to enhance electrocatalytic activity. Nanoscale 2017, 9 (26), 8945-8951.
    https://pubs.rsc.org/en/content/articlelanding/2017/NR/C7NR03123H#!divAbstract
    92) Zhang, X.; Wu, D.; Cheng, D.*, Component-dependent electrocatalytic activity of PdCu bimetallic nanoparticles for hydrogen evolution reaction. Electrochimica Acta 2017, 246, 572-579.
    https://www.sciencedirect.com/science/article/pii/S0013468617313142?via%3Dihub
    91) Yu, H.; Cao, D.; Fisher, A.; Johnston, R. L.; Cheng, D.*, Size effect on the adsorption and dissociation of CO2 on Co nanoclusters. Applied Surface Science 2017, 396, 539-546.
    https://linkinghub.elsevier.com/retrieve/pii/S0169433216323285
    90) Yang, Y.; Zheng, W.; Cheng, D.*; Cao, D. *, Designing transition metal and nitrogen-codoped SrTiO3(001) perovskite surfaces as efficient photocatalysts for water splitting. Sustainable Energy & Fuels 2017, 1 (9), 1968-1980.
    https://pubs.rsc.org/en/content/articlelanding/2017/SE/C7SE00219J#!divAbstract
    89) Xu, H.; Xu, C.-Q. *; Cheng, D.*; Li, J. *, Identification of activity trends for CO oxidation on supported transition-metal single-atom catalysts. Catalysis Science & Technology 2017, 7 (24), 5860-5871.
    https://pubs.rsc.org/en/content/articlelanding/2017/CY/C7CY00464H#!divAbstract
    88) Wei, Y.; Huang, X.; Wang, J.; Yu, H.; Zhao, X.; Cheng, D.*, Synthesis of bifunctional non-noble monolithic catalyst Co-W-P/carbon cloth for sodium borohydride hydrolysis and reduction of 4-nitrophenol. International Journal of Hydrogen Energy 2017, 42 (41), 25860-25868.
    https://linkinghub.elsevier.com/retrieve/pii/S0360319917334201
    87) Zhu, L.; Zhang, W.; Zhu, J. *; Cheng, D.*, Mechanistic insight into the facet-dependent selectivity of ethylene epoxidation on Ag nanocatalysts. Applied Catalysis A: General 2017, 538, 27-36.
    https://linkinghub.elsevier.com/retrieve/pii/S0926860X17301102
    86) Zhao, Z.; Wang, F.-H.; Fisher, A.; Shen, Y. *; Cheng, D.*, Phase stability and segregation behavior of nickel-based nanoalloys based on theory and simulation. Journal of Alloys and Compounds 2017, 708, 1150-1160.
    https://linkinghub.elsevier.com/retrieve/pii/S092583881730796X
    85) Yan, B.; Zhao, Z.; Zhou, Y.; Yuan, W. *; Li, J.; Wu, J.; Cheng, D.*, A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters. Computer Physics Communications 2017, 219, 79-86.
    https://linkinghub.elsevier.com/retrieve/pii/S001046551730139X
    84) Zhang, W.; Shan, S.; Luo, J.; Fisher, A.; Chen, J.-F.; Zhong, C.-J. *; Zhu, J. *; Cheng, D.*, Origin of Enhanced Activities for CO Oxidation and O2 Reaction over Composition-Optimized Pd50Cu50 Nanoalloy Catalysts. The Journal of Physical Chemistry C 2016, 121 (20), 11010-11020.
    https://pubs.acs.org/doi/10.1021/acs.jpcc.6b10814
    83) Ren, D.; Cheng, G.; Li, J. *; Li, J.; Dai, W.; Sun, X.; Cheng, D.*, Effect of Rhenium Loading Sequence on Selectivity of Ag–Cs Catalyst for Ethylene Epoxidation. Catalysis Letters 2017, 147 (12), 2920-2928.
    https://link.springer.com/article/10.1007/s10562-017-2211-5
    82) Yang, Y.; Dai, C.; Fisher, A.; Shen, Y. *; Cheng, D.*, A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface. J Phys Condens Matter 2017, 29 (36), 365201.
    https://iopscience.iop.org/article/10.1088/1361-648X/aa7db6
    81) Ren, D.; Xu, H.; Li, J. *; Li, J.; Cheng, D.*, Origin of enhanced ethylene oxide selectivity by Cs-promoted silver catalyst. Molecular Catalysis 2017, 441, 92-99.
    https://linkinghub.elsevier.com/retrieve/pii/S246882311730442X
    80) Lian, X.; Zhao, Z.; Cheng, D.*, Recent progress on triphenylamine materials: synthesis, properties, and applications. Molecular Crystals and Liquid Crystals 2017, 648 (1), 223-235.
    https://www.tandfonline.com/doi/abs/10.1080/15421406.2017.1302042?journalCode=gmcl20

  • 2016

    79) Yu, H.; Fisher, A.; Cheng, D.*; Cao, D. *, Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. ACS Appl Mater Interfaces 2016, 8 (33), 21431-9.
    https://pubs.acs.org/doi/10.1021/acsami.6b04189
    78) Dai, C.; Yang, Y.; Fisher, A.; Liu, Z. *; Cheng, D.*, Interaction of CO2 with metal cluster-functionalized ionic liquids. Journal of CO2 Utilization 2016, 16, 257-263.
    https://linkinghub.elsevier.com/retrieve/pii/S2212982016302281
    77) Yang, Y.; Dai, C.; Shen, Y. *; Fisher, A.; Cheng, D.*, Design of binary and ternary platinum shelled electrocatalysts with inexpensive metals for the oxygen reduction reaction. International Journal of Hydrogen Energy 2016, 41 (30), 13014-13023.
    https://linkinghub.elsevier.com/retrieve/pii/S0360319916302841
    76) Wu, D.; Xu, H.; Cao, D.; Fisher, A.; Gao, Y. *; Cheng, D.*, PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment. Nanotechnology 2016, 27 (49), 495403.
    https://iopscience.iop.org/article/10.1088/0957-4484/27/49/495403
    75) Yang, C.; Chen, J. F. *; Zeng, X. *; Cheng, D.*; Huan, H.; Cao, D., Enhanced near-infrared shielding ability of (Li,K)-codoped WO3 for smart windows: DFT prediction validated by experiment. Nanotechnology 2016, 27 (7), 075203.
    https://iopscience.iop.org/article/10.1088/0957-4484/27/7/075203
    74) Zhao, Z.; Fisher, A.; Cheng, D.*, Phase diagram and segregation of Ag-Co nanoalloys: insights from theory and simulation. Nanotechnology 2016, 27 (11), 115702.
    https://iopscience.iop.org/article/10.1088/0957-4484/27/11/115702
    73) Jiang, L.; Zhang, W.; Luo, C.; Cheng, D.; Zhu, J. *, Adsorption toward Trivalent Rare Earth Element from Aqueous Solution by Zeolitic Imidazolate Frameworks. Industrial & Engineering Chemistry Research 2016, 55 (22), 6365-6372.
    https://pubs.acs.org/doi/10.1021/acs.iecr.6b00422
    72) Chang, L.; Fisher, A.; Liu, Z. *; Cheng, D.*, Highly sensitive and selective colorimetric detection of sulphide using Ag–Au nanoalloys: a DFT study. RSC Advances 2016, 6 (20), 16285-16291.
    https://pubs.rsc.org/en/content/articlelanding/2016/RA/C5RA17361B#!divAbstract
    71) Wei, C.; Zhao, Z.; Fisher, A.; Zhu, J. *; Cheng, D.*, Theoretical Study on the Structures and Thermal Properties of Ag–Pt–Ni Trimetallic Clusters. Journal of Cluster Science 2016, 27 (6), 1849-1861.
    https://link.springer.com/article/10.1007%2Fs10876-016-1068-x
    70) Zhao, Z.; Fisher, A.; Shen, Y.; Cheng, D.*, Magnetic Properties of Pt-Based Nanoalloys: A Critical Review. Journal of Cluster Science 2016, 27 (3), 817-843.
    https://link.springer.com/article/10.1007%2Fs10876-016-0983-1
    69) Cheng, D.*, Frontiers of Molecular Simulation in China. Molecular Simulation 2016, 42 (10), 783-783.
    https://www.tandfonline.com/doi/full/10.1080/08927022.2016.1167443
    68) Cheng, D.*; Wu, D.; Xu, H.; Fisher, A., Composition-controlled Synthesis of PtCuNPs Shells on Copper Nanowires as Electrocatalysts. ChemistrySelect 2016, 1 (15), 4392-4396.
    https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201600562
    67) Chang, L.; Fisher, A.; Liu, Z. *; Cheng, D.*, A density functional theory study of sulfur adsorption on Ag–Au nanoalloys. Computational and Theoretical Chemistry 2016, 1085, 66-74.
    https://linkinghub.elsevier.com/retrieve/pii/S2210271X16301244
    66) Liu, X.; Dai, C.; Wu, D.; Fisher, A.; Liu, Z. *; Cheng, D.*, Facile Synthesis of PdAgCo Trimetallic Nanoparticles for Formic Acid Electrochemical Oxidation. Chemistry Letters 2016, 45 (7), 732-734.
    https://www.journal.csj.jp/doi/10.1246/cl.160243

  • 2015

    65) Wu, D.; Cheng, D.*, Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Electrochimica Acta 2015, 180, 316-322.
    https://doi.org/10.1016/j.electacta.2015.08.127
    64) Zhang, W.; Cui, R.; Wu, H.; Zhu, J. *; Cheng, D.*, CO oxidation mechanism on a MgO(1 0 0) supported Pt x Au 3−x clusters. Applied Surface Science 2015, 356, 282-288.
    https://doi.org/10.1016/j.apsusc.2015.08.081
    63) Chang, L.; Liu, Z. *; Cheng, D.*, Optical properties of Ag–Au nanoclusters for sulphide sensing from TDDFT calculations. Journal of Alloys and Compounds 2015, 653, 363-368.
    https://doi.org/10.1016/j.jallcom.2015.09.030
    62) Wang, Q.; Fang, Y.; Meng, H.; Wu, W. *; Chu, G.; Zou, H.; Cheng, D.*; Chen, J., Enhanced simulated sunlight induced photocatalytic activity by pomegranate-like S doped SnO2@TiO2 spheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 482, 529-535.
    https://doi.org/10.1016/j.colsurfa.2015.06.011
    61) Yang, Y.; Zhao, Z.; Cui, R.; Wu, H.; Cheng, D.*, Structures, Thermal Stability, and Chemical Activity of Crown-Jewel-Structured Pd–Pt Nanoalloys. The Journal of Physical Chemistry C 2015, 119 (20), 10888-10895.
    https://doi.org/10.1021/jp5107108
    60) Niu, M.; Cui, R.; Wu, H.; Cheng, D.*; Cao, D. *, Enhancement Mechanism of the Conversion Effficiency of Dye-Sensitized Solar Cells Based on Nitrogen-, Fluorine-, and Iodine-Doped TiO2 Photoanodes. The Journal of Physical Chemistry C 2015, 119 (24), 13425-13432.
    http://pubs.acs.org/doi/pdfplus/10.1021/acs.jpcc.5b02652
    59) Niu, M.; Tan, H.; Cheng, D.*; Sun, Z. *; Cao, D. *, Bandgap engineering of Magneli phase Ti(n)O(2n-1): Electron-hole self-compensation. J Chem Phys 2015, 143 (5), 054701.
    https://doi.org/10.1063/1.4928062
    58) Zhang, W.; Sumer, A.; Jellinek, J. *; Cheng, D.*, Morphology Tailoring of Pt Nanocatalysts for the Oxygen Reduction Reaction: The Paradigm of Pt13. ChemNanoMat 2015, 1 (7), 482-488.
    https://doi.org/10.1002/cnma.201500107
    57) Wang, J.; Yuan, W. *; Cheng, D.*, Hybrid genetic–particle swarm algorithm: An efficient method for fast optimization of atomic clusters. Computational and Theoretical Chemistry 2015, 1059, 12-17.
    https://doi.org/10.1016/j.comptc.2015.02.003
    56)Wu, D.; Dai, C.; Li, S.; Cheng, D.*, Shape-controlled Synthesis of PdCu Nanocrystals for Formic Acid Oxidation. Chemistry Letters 2015, 44 (8), 1101-1103.
    https://doi.org/10.1246/cl.150386

  • 2006-2014

    55) Chang, L.; Xu, H.; Cheng, D.*, Role of ligand type on the geometric and electronic properties of Ag–Au bimetallic clusters. Computational and Theoretical Chemistry 2014, 1045, 35-40.
    https://doi.org/10.1016/j.comptc.2014.06.023
    54) Chen, B.; Cheng, D.*; Zhu, J. *, Synthesis of PtCu nanowires in nonaqueous solvent with enhanced activity and stability for oxygen reduction reaction. Journal of Power Sources 2014, 267, 380-387.
    https://doi.org/10.1016/j.jpowsour.2014.05.104
    53) Cheng, D.*; Qiu, X.; Yu, H., Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying. Phys Chem Chem Phys 2014, 16 (38), 20377-81.
    http://pubs.rsc.org/en/content/articlepdf/2014/cp/c4cp02863e
    52) Cheng, D.*; Xu, H.; Fortunelli, A. *, Tuning the catalytic activity of Au–Pd nanoalloys in CO oxidation via composition. Journal of Catalysis 2014, 314, 47-55.
    https://doi.org/10.1016/j.jcat.2014.03.017
    51) Cheng, D.; Zhang, M.; Chen, J. *; Yang, C.; Zeng, X. *; Cao, D., Computer Screening of Dopants for the Development of New SnO2-Based Transparent Conducting Oxides. The Journal of Physical Chemistry C 2014, 118 (4), 2037-2043.
    https://doi.org/10.1021/jp410363n
    50) Fang, Y.; Cheng, D.*; Wu, W. *, Understanding electronic and optical properties of N–Sn codoped anatase TiO2. Computational Materials Science 2014, 85, 264-268.
    https://doi.org/10.1016/j.commatsci.2014.01.018
    49) Li, M.; Li, S.; Cheng, D.*, Influence of adsorbates on the segregation properties of Au–Pd bimetallic clusters. Computational Materials Science 2014, 81, 253-258.
    https://doi.org/10.1016/j.commatsci.2013.08.019
    48) Li, S.; Cheng, D.*; Qiu, X.; Cao, D., Synthesis of Cu@Pd core-shell nanowires with enhanced activity and stability for formic acid oxidation. Electrochimica Acta 2014, 143, 44-48.
    https://doi.org/10.1016/j.electacta.2014.07.156
    47) Niu, M.; Cheng, D.*; Cao, D. *, Understanding the Mechanism of Photocatalysis Enhancements in the Graphene-like Semiconductor Sheet/TiO2 Composites. The Journal of Physical Chemistry C 2014, 118 (11), 5954-5960.
    https://doi.org/10.1021/jp412556r
    46) Niu, M.; Cheng, D.*; Cao, D. *, SiH/TiO2 and GeH/TiO2 heterojunctions: promising TiO2-based photocatalysts under visible light. Sci Rep 2014, 4, 4810.
    http://www.nature.com/srep/2014/140502/srep04810/full/srep04810.html
    45) Niu, M.; Cheng, D.*; Cao, D. *, Fluorite TiO2(111) Surface Phase for Enhanced Visible-Light Solar Energy Conversion. The Journal of Physical Chemistry C 2014, 118 (35), 20107-20111.
    https://doi.org/10.1021/jp504818j
    44) Tan, H.; Zhao, Z.; Niu, M.; Mao, C.; Cao, D. *; Cheng, D.; Feng, P. *; Sun, Z. *, A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 2014, 6 (17), 10216-23.
    http://pubs.rsc.org/en/content/articlepdf/2014/nr/c4nr02677b
    43) Yang, C.; Chen, J.-F.; Zeng, X. *; Cheng, D.*; Cao, D., Design of the Alkali-Metal-Doped WO3as a Near-Infrared Shielding Material for Smart Window. Industrial & Engineering Chemistry Research 2014, 53 (46), 17981-17988.
    https://doi.org/10.1021/ie503284x
    42) Zhang, W.; Cheng, D.*; Zhu, J. *, Theoretical study of CO catalytic oxidation on free and defective graphene-supported Au–Pd bimetallic clusters. RSC Adv. 2014, 4 (80), 42554-42561.
    https://pubs.rsc.org/en/content/articlelanding/2014/RA/c4ra05084c
    41) Zhao, Z.; Li, M.; Cheng, D.*; Zhu, J. *, Understanding the structural properties and thermal stabilities of Au–Pd–Pt trimetallic clusters. Chemical Physics 2014, 441, 152-158.
    https://doi.org/10.1016/j.chemphys.2014.07.016
    40) Xu, H.; Cheng, D.*, Effect of the Passivating Ligands on the Geometric and Electronic Properties of Au–Pd Nanoalloys. Journal of Cluster Science 2014, 26 (3), 799-813.
    http://link.springer.com/article/10.1007%2Fs10876-014-0755-8#
    39) Yang, Y.; Cheng, D.*, Role of Composition and Geometric Relaxation in CO2 Binding to Cu–Ni Bimetallic Clusters. The Journal of Physical Chemistry C 2014, 118 (1), 250-258.
    https://doi.org/10.1021/jp4075674
    38) Cheng, D.*; Jiang, K., Structural stability and kinetics of small carbon clusters on a bimetallic Cu/Ni(111) surface: A first-principles study. Surface Science 2013, 609, 85-90.
    http://doi.org/10.1016/j.susc.2012.11.008
    37) Cheng, D.*; Negreiros, F. R.; Aprà, E.; Fortunelli, A. *, Computational Approaches to the Chemical Conversion of Carbon Dioxide. ChemSusChem 2013, 6 (6), 944-965.
    http://doi.org/10.1002/cssc.201200872
    36) Cheng, D.*; Yuan, S.; Ferrando, R. *, Structure, chemical ordering and thermal stability of Pt–Ni alloy nanoclusters. Journal of Physics: Condensed Matter 2013, 25 (35), 355008.
    http://doi.org/10.1088/0953-8984/25/35/355008
    35) Fang, Y.; Cheng, D.*; Niu, M.; Yi, Y.; Wu, W. *, Tailoring the electronic and optical properties of rutile TiO2 by (Nb+Sb, C) codoping from DFT+U calculations. Chemical Physics Letters 2013, 567, 34-38.
    http://doi.org/10.1016/j.cplett.2013.02.070
    34) Li, M.; Cheng, D.*, Molecular Dynamics Simulation of the Melting Behavior of Crown-Jewel Structured Au–Pd Nanoalloys. The Journal of Physical Chemistry C 2013, 117 (36), 18746-18751.
    http://doi.org/10.1021/jp4062835
    33) Niu, M.; Cheng, D.*; Cao, D. *, Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S–O coupling for water splitting. International Journal of Hydrogen Energy 2013, 38 (3), 1251-1257.
    http://doi.org/10.1016/j.ijhydene.2012.10.109
    32) Niu, M.; Cheng, D.*; Cao, D. *, Understanding Photoelectrochemical Properties of B–N Codoped Anatase TiO2 for Solar Energy Conversion. The Journal of Physical Chemistry C 2013, 117 (31), 15911-15917.
    http://doi.org/10.1021/jp4038792
    31) Cheng, D.*; Wang, W., Tailoring of Pd–Pt bimetallic clusters with high stability for oxygen reduction reaction. Nanoscale 2012, 4 (7), 2408-2415.
    http://doi.org/10.1039/c2nr12097f
    30) Huang, L.; Xiang, Z.; Cheng, D.; Lan, J.; Wang, W.; Ben, T.; Cao, D. *, Semiconducting and conducting transition of covalent-organic polymers induced by defects. Nanotechnology 2012, 23 (39), 395702.
    http://doi.org/10.1088/0957-4484/23/39/395702
    29) Niu, M.; Cheng, D.*; Huo, L.; Shao, X. *, First principles study on the p-type transparent conducting properties of rutile Ti1−xInxO2. Journal of Alloys and Compounds 2012, 539, 221-225.
    http://doi.org/10.1016/j.jallcom.2012.06.023
    28) Xu, W.; Cheng, D.*; Niu, M.; Shao, X. *; Wang, W., Modification of the adsorption properties of O and OH on Pt–Ni bimetallic surfaces by subsurface alloying. Electrochimica Acta 2012, 76, 440-445.
    http://doi.org/10.1016/j.electacta.2012.05.053
    27) Zhu, B.; Wang, Y.; Atanasov, I. S.; Cheng, D.; Hou, M. *, Ordering and segregation in isolated Au–Pd icosahedral nanoclusters and nanowires and the consequences of their encapsulation inside carbon nanotubes. Journal of Physics D: Applied Physics 2012, 45 (16), 165302.
    http://doi.org/10.1088/0022-3727/45/16/165302
    26) Cheng, D.; Atanasov, I. S.; Hou, M. *, Influence of the environment on equilibrium properties of Au-Pd clusters. The European Physical Journal D 2011, 64 (1), 37-44.
    http://doi.org/10.1140/epjd/e2011-20129-9
    25) Cheng, D.*; Barcaro, G.; Charlier, J.-C.; Hou, M.; Fortunelli, A. *, Homogeneous Nucleation of Graphitic Nanostructures from Carbon Chains on Ni(111). The Journal of Physical Chemistry C 2011, 115 (21), 10537-10543.
    http://doi.org/10.1021/jp2028092
    24) Cheng, D.; Lan, J.; Cao, D. *; Wang, W., Adsorption and dissociation of ammonia on clean and metal-covered TiO2 rutile (110) surfaces: A comparative DFT study. Applied Catalysis B: Environmental 2011, 106 (3-4), 510-519.
    http://doi.org/10.1016/j.apcatb.2011.06.010
    23) Niu, M.; Xu, W.; Shao, X. *; Cheng, D.*, Enhanced photoelectrochemical performance of rutile TiO2 by Sb-N donor-acceptor coincorporation from first principles calculations. Applied Physics Letters 2011, 99 (20), 203111.
    http://doi.org/10.1063/1.3662968
    22) Zhu, B. E.; Pan, Z. Y.; Hou, M.; Cheng, D.; Wang, Y. X. *, Melting behaviour of gold nanowires in carbon nanotubes. Molecular Physics 2011, 109 (4), 527-533.
    http://doi.org/10.1080/00268976.2010.533708
    21) Cheng, D.*; Hou, M., Structures, thermal stability, and melting behaviors of free-standing pentagonal multi-shell Pd-Pt nanowires. The European Physical Journal B 2010, 74 (3), 379-390.
    http://doi.org/10.1140/epjb/e2010-00086-5
    20) Cheng, D.; Hou, M. *; Moors, M.; de Bocarmé, T. V.; Kruse, N., Triggering surface nickel diffusion by adsorption of carbon. Chemical Physics Letters 2010, 492 (1-3), 63-67.
    http://doi.org/10.1016/j.cplett.2010.03.088
    19) Cheng, D.*; Lan, J., Thermal behaviour of Pd clusters inside carbon nanotubes: insights into the cluster-size, tube-size and metal–tube interaction effects. Molecular Simulation 2010, 36 (10), 805-814.
    http://doi.org/10.1080/08927021003762720
    18) Zhu, B.; Wang, Y. X.; Pan, Z. Y.; Cheng, D.; Hou, M. *, Nanowire formation by coalescence of small gold clusters inside carbon nanotubes. The European Physical Journal D 2010, 57 (2), 219-226.
    http://doi.org/10.1140/epjd/e2010-00046-3
    17) Cheng, D.; Lan, J.; Wang, W. *; Cao, D. *, Theoretical study of the structures of MgO(100)-supported Au clusters. Surface Science 2009, 603 (6), 881-886.
    http://doi.org/10.1016/j.susc.2009.01.039
    16) Cheng, D.; Wang, W. *; Cao, D. *; Huang, S., Simulating Synthesis of Metal Nanorods, Nanoplates, and Nanoframes by Self-Assembly of Nanoparticle Building Blocks. The Journal of Physical Chemistry C 2009, 113 (10), 3986-3997.
    http://doi.org/10.1021/jp809628w
    15) Liu, X.; Cheng, D.; Cao, D. *, The structure, energetics and thermal evolution of SiGe nanotubes. Nanotechnology 2009, 20 (31), 315705.
    http://doi.org/10.1088/0957-4484/20/31/315705
    14) Cheng, D.; Cao, D. *, Structural transition and melting of onion-ring Pd–Pt bimetallic clusters. Chemical Physics Letters 2008, 461 (1-3), 71-76.
    http://doi.org/10.1016/j.cplett.2008.06.062
    13) Cheng, D.; Cao, D. *, Ternary alloying effect on the melting of metal clusters. The European Physical Journal B 2008, 66 (1), 17-23.
    http://doi.org/10.1140/epjb/e2008-00377-4
    12) Cheng, D.; Wang, W. *; Huang, S., Melting phenomena: effect of composition for 55-atom Ag–Pd bimetallic clusters. Physical Chemistry Chemical Physics 2008, 10 (18), 2513-2518.
    http://doi.org/10.1039/b800630j
    11) Cheng, D.; Wang, W. *; Huang, S., Cao D., Atomistic Modeling of Multishell Onion-Ring Bimetallic Nanowires and Clusters. The Journal of Physical Chemistry C 2008, 112 (13), 4855–4860.
    http://doi.org/https://doi.org/10.1021/jp0776863
    10) Lan, J.; Cheng, D.; Cao D. *; Wang, W., Silicon Nanotube as a Promising Candidate for Hydrogen Storage: From the First Principle Calculations to Grand Canonical Monte Carlo Simulations. The Journal of Physical Chemistry C 2008, 112 (14), 5598–5604.
    http://doi.org/https://doi.org/10.1021/jp711754h
    9) Cheng, D.; Liu, X.; Cao, D. *; Wang, W.; Huang, S., Surface segregation of Ag–Cu–Au trimetallic clusters. Nanotechnology 2007, 18 (47), 475702.
    http://doi.org/10.1088/0957-4484/18/47/475702
    8) Cheng, D.; Wang, W. *; Huang, S., Core–shell-structured bimetallic clusters and nanowires. Journal of Physics: Condensed Matter 2007, 19 (35), 356217.
    http://doi.org/10.1088/0953-8984/19/35/356217
    7) Cheng, D.; Wang, W. *; Huang, S., Thermal Evolution of a Platinum Cluster Encapsulated in Carbon Nanotubes. The Journal of Physical Chemistry C 2007, 111 (4), 1631-1637.
    http://doi.org/https://doi.org/10.1021/jp066306v
    6) Cheng, D.; Wang, W. *; Huang, S., Thermal Evolution of Pd and Pd-Pt Clusters Supported on MgO(100). The Journal of Physical Chemistry C 2007, 111 (22), 8037-8042.
    https://doi.org/10.1021/jp070534n
    5) Pan Y.; Cheng, D.; Huang, S.; Wang, W. *, Melting Behaviour of Core-Shell Structured Ag-Rh Bimetallic Clusters. Chinese Physics Letters 2007, 24, 1656-1659.
    https://iopscience.iop.org/article/10.1088/0256-307X/24/6/062/pdf
    4) Cheng, D.; Huang, S.*; Wang, W. *, The structure of 55-atom Cu–Au bimetallic clusters: Monte Carlo study. The European Physical Journal D 2006, 39 (1), 41-48.
    http://doi.org/10.1140/epjd/e2006-00069-3
    3) Cheng, D.; Huang, S.; Wang, W. *, Thermal behavior of core-shell and three-shell layered clusters: Melting ofCu1Au54andCu12Au43. Physical Review B 2006, 74 (6), 064117.
    http://doi.org/10.1103/PhysRevB.74.064117
    2) Cheng, D.; Huang, S. *; Wang, W., Structures of small Pd–Pt bimetallic clusters by Monte Carlo simulation. Chemical Physics 2006, 330 (3), 423-430.
    http://doi.org/10.1016/j.chemphys.2006.09.015
    1) Cheng, D.; Wang, W. *; Huang, S., The Onion-Ring Structure for Pd-Pt Bimetallic Clusters. The Journal of Physical Chemistry B 2006, 110, 16193-16196. http://doi.org/https://doi.org/10.1021/jp063721e