Cheng's Research Group
151) Cao, D.; Xu, HX.; Cheng, DJ.*, Construction of Defect‐Rich RhCu Nanotubes with Highly Active Rh3Cu1 Alloy Phase for Overall Water Splitting in All pH Values. Advanced Energy Materials 2020, 10, 1903038.
https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201903038
150) Huang, XK.; Xu, HX.; Cao, D.; Cheng, DJ.*, Interface construction of P-Substituted MoS2 as efficient and robust electrocatalyst for alkaline hydrogen evolution reaction. Nano Energy 2020, 78, 105253.
https://www.sciencedirect.com/science/article/pii/S2211285520308314
149) Huang, XK.; Xu, XP.; Luan, XP.; Cheng, DJ.*, CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 2020, 68, 104332.
https://www.sciencedirect.com/science/article/pii/S2211285519310390
148) Cao, D.; Wang, JY.; Xu, HX.; Cheng, DJ.*, Growth of Highly Active Amorphous RuCu Nanosheets on Cu Nanotubes for the Hydrogen Evolution Reaction in Wide pH Values. Small 2020, 16, 2000924.
https://doi.org/10.1002/smll.202000924
147) Wu, DF.; Zhang, W.; Lin, AJ. *; Cheng, DJ.*, Low Pt-Content Ternary PtNiCu Nanoparticles with Hollow Interiors and Accessible Surfaces as Enhanced Multifunctional Electrocatalysts. ACS Applied Materials & Interfaces 2020, 12, 9600-9608.
https://pubs.acs.org/doi/abs/10.1021/acsami.9b20076
146) Xu, HX.; Cheng, DJ.*, First-principles-aided Thermodynamic Modeling of Transition-metal Heterogeneous Catalysts: A review. Green Energy & Environment 2020,5,286-302.
https://www.sciencedirect.com/science/article/pii/S2468025720301060
145) Li, LX.; Xie, ZH. *; Fernandez, C.; Wu, L.; Cheng, DJ.; Jiang, XH.; Zhong, CJ., Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection. Electrochimica Acta 2020, 330, 135186.
https://www.sciencedirect.com/science/article/pii/S0013468619320572
144) Wu, DF.; Yang, Y.; Dai, CQ.; Cheng, DJ.*, Enhanced oxygen reduction activity of PtCu nanoparticles by morphology tuning and transition-metal doping. International Journal of Hydrogen Energy 2020, 45 (7), 4427-4434.
https://www.sciencedirect.com/science/article/pii/S0360319919344635
143) Xu, XP.; Xu, HX. *; Cheng, DJ.*, Identification of the Anti-triangular Etched MoS2 with Comparative Activity with Commercial Pt for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy 2020,45,33457-33465.
https://doi.org/10.1016/j.ijhydene.2020.09.071
142) Zhao, Z.; Xu, HX.; Feng, ZY.*; Zhang, YQ.; Cui, MS.; Cao, D.; Cheng, DJ.*, Design of High-Performance Co-Based Alloy Nanocatalysts for the Oxygen Reduction Reaction. Chemistry — A European Journal 2020, 26,4128-4135.
https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.201904431
141) Zhang, W.; Zhu, JQ. *; Cheng, DJ.*; Zeng, X.C. *, PtCoNi Alloy Nanoclusters for Synergistic Catalytic Oxygen Reduction Reaction. ACS Applied Nano Materials 2020, 3, 2536-2544.
https://pubs.acs.org/doi/abs/10.1021/acsanm.9b02604
140) Zhou, YC.; Zhao, Z.; Cheng, DJ.*, Cluster structure prediction via revised particle-swarm optimization algorithm. Computer Physics Communications 2020, 247, 106945.
https://www.sciencedirect.com/science/article/pii/S0010465519302966
139) Yang, L.; Xu, HX.; Liu, HB.; Zeng, XF.; Cheng, DJ.; Huang, Y.; Zheng, LR.; Cao, R.; Cao, DP. *, Oxygen-Reconstituted Active Species of Single-Atom Cu Catalysts for Oxygen Reduction Reaction. Research 2020, 7592023.
https://doi.org/10.34133/2020/7593023