32. Cao, D.; Zhang, ZR.; Cui, YH.; Zhang, YH.; Zhang, LP.; Zeng, J*. and Cheng, DJ.*; One-Step Approach for Constructing High-Density Single-Atom Catalysts toward Overall Water Splitting at Industrial Current Densities. Angewandte Chemie International Edition 2023, 62, e202214259.
https://doi.org/10.1002/anie.202214259
31. Cuo, M.; Ma, PJ.; Wei, L.; Wang, JY.; Wang, ZW.; Zheng,K; Cheng, DJ.; Liu,YX.; Dai,HX.; Guo,GS.; Duan,EH. and Deng,JG*.; Highly Selective Activation of C–H Bond and Inhibition of C–C Bond Cleavage by Tuning Strong Oxidative Pd Sites. Journal of the American Chemical Society 2023, 145(20),11110-11120.
https://doi.org/10.1021/jacs.3c00747
30. Xia,W.; Ma,MY.; Guo,XY.; Cheng, DJ.; Wu,DF*. and Cao,D*. Fabricating Ru Atom-Doped Novel FeP4/Fe2PO5 Heterogeneous Interface for Overall Water Splitting in Alkaline Environment. ACS Appl. Mater. Interfaces 2023, 15, 44827-44838.
https://doi.org/10.1021/acsami.3c07326
29. Ma,MY.; Xia,W.; Guo,XY.; Liu,WH.; Cao,D*. and Cheng, DJ*.;Constructing Ni3Se2-Nanoisland-Confined Pt1Mo1 Dual-Atom Catalyst for Efficient Hydrogen Evolution in Basic Media SMALL STRUCTURES 2023.
https://doi.org/10.1002/sstr.202300284
28. Cao, D.; Shao, J.; Cui, YH.; Zhang, LP. and Cheng, DJ.*; Interfacial Engineering of Copper–Nickel Selenide Nanodendrites for Enhanced Overall Water Splitting in Alkali Condition. small 2023, 2301613.
https://doi.org/10.1002/smll.202301613
27. Wang, JY.; Xu, HX.; Che, CX.; Zhu, JQ.; and Cheng, DJ.*, Rational Design of PdAg Catalysts for Acetylene Selective Hydrogenation via Structural Descriptor-based Screening Strategy. ACS Catalysis 2023, 13(1), 433-444.
https://doi.org/10.1021/acscatal.2c05498
26. Cao, D.; Huang, XY.; Zhang, HM.; Liu, WH. and Cheng, DJ.*, Constructing porous RuCu nanotubes with highly efficient alloy phase for water splitting in different pH conditions. Chemical Engineering Journal 2023, 456, 141148.
https://doi.org/10.1016/j.cej.2022.141148
25. Qiao, ZZ.; Zhang, K.; Liu, J.; Cheng, DJ.; Yu, BR.; Zhao, NN.*; Xu, FJ.*; Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nature Communications 2022, 13, 7164.
https://doi.org/10.1038/s41467-022-34883-5
24. Cao, D.; Hu, HX.; Li, HL.; Chen, F.; Zeng, J.* and Cheng, DJ*.; Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nature Communications 2022, 13, 5843.
https://doi.org/10.1038/s41467-022-33589-y
23. Guo, M.; Ma, PJ.; Wang, JY.; Xu, HX.; Zhang, K.; Cheng, DJ.; Liu, YX.; Guo, GS.; Dai, HX.; Duan, EH.; Deng, JG.*; Synergy in Au-CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angewandte Chemie International Edition 2022, 61, e202203827.
https://doi.org/10.1002/anie.202203827
22. Xu, H.; Xu, HX.*; Cheng, DJ.*, Resolving the Reaction Mechanism for Oxidative Hydration of Ethylene toward Ethylene Glycol by Titanosilicate Catalysts. ACS Catalysis 2022, 12, 9446-9457.
https://doi.org/10.1021/acscatal.2c01160
21. Xu, H.; Cheng, D.*; Cao, D. *; Zeng, X. C. *, A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis 2018, 1 (5), 339-348. (Highly Cited Paper)
(Nebraska Today, May 15, 2018; Nature Catalysis News, May, 2018 ; Chemical & Engineering News, May 7, 2018 )
https://doi.org/10.1038/s41929-018-0063-z
20. Elouarzaki, K.; Cheng, D.; Fisher, A. C.; Lee, J.-M. *, Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells. Nature Energy 2018, 3 (7), 574-581 (Nature Energy News & Views, June 4, 2018 )
https://www.nature.com/articles/s41560-018-0166-4
19. Yang, L.1; Cheng, D.1; Xu, H.; Zeng, X.; Wan, X.; Shui, J.; Xiang, Z.; Cao, D. *, Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc Natl Acad Sci U S A 2018, 115 (26), 6626-6631.
http://dx.doi.org/10.1073/pnas.1800771115
18. Cao, D. 1; Xu, H. 1; Cheng, D.*, Branch-leaf-shaped CuNi@NiFeCu nanodendrites as highly efficient electrocatalysts for overall water splitting. Applied Catalysis B: Environmental 2021, 298(5), 120600.
https://doi.org/10.1016/j.apcatb.2021.120600
17. Xu, H. 1; Zhu, L. 1; Nan, Y.; Xie, Y.; Cheng, D.*, Revisit the Role of Metal Dopants in Enhancing the Selectivity of Ag-Catalyzed Ethylene Epoxidation: Optimizing Oxophilicity of Reaction Site via Cocatalytic Mechanism. ACS Catalysis 2021, 11, 3371-3383.
https://pubs.acs.org/doi/10.1021/acscatal.0c04951
16. Cao, D. 1; Wang, J. 1; Zhang, H.; Xu, H. *; Cheng, D.*, Growth of IrCu nanoislands with rich IrCu/Ir interfaces enables highly efficient overall water splitting in non-acidic electrolytes. Chemical Engineering Journal 2021, 416 (15), 129128.
https://doi.org/10.1016/j.cej.2021.129128
15. Xiao, F. 1; Liu, X. 1; Sun, C.-J.; Hwang, I.; Wang, Q.; Xu, Z.; Wang, Y.; Zhu, S.; Wu, H.-w.; Wei, Z.; Zheng, L.; Cheng, D.; Gu, M.; Xu, G.-L.*; Amine, K.*; Shao, M.*, Solid-State Synthesis of Highly Dispersed Nitrogen-Coordinated Single Iron Atom Electrocatalysts for Proton Exchange Membrane Fuel Cells. Nano Letters 2021, 21 (8), 3633-3639.
https://pubs.acs.org/doi/10.1021/acs.nanolett.1c00702
14. Cao, D. 1; Wang, J. 1; Xu, H. ; Cheng, D.1, Construction of Dual-Site Atomically Dispersed Electrocatalysts with Ru-C5 Single Atoms and Ru-O4 Nanoclusters for Accelerated Alkali Hydrogen Evolution. Small 2021, 2101163.
DOI: 10.1002/smll.202101163
13. Cao, D.; Wang, J.; Xu, H.; Cheng, D.*, Growth of Highly Active Amorphous RuCu Nanosheets on Cu Nanotubes for the Hydrogen Evolution Reaction in Wide pH Values. Small 2020, 16 (37), 2000924.
https://doi.org/10.1002/smll.202000924
12. Cao, D.; Xu, H.; Cheng, D.*, Construction of Defect‐Rich RhCu Nanotubes with Highly Active Rh3Cu1 Alloy Phase for Overall Water Splitting in All pH Values. Advanced Energy Materials 2020, 10 (9), 1903038.
https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201903038
9. Huang, X.; Xu, X.; Li, C.; Wu, D.; Cheng, D.*; Cao, D. *, Vertical CoP Nanoarray Wrapped by N,P‐Doped Carbon for Hydrogen Evolution Reaction in Both Acidic and Alkaline Conditions. Advanced Energy Materials 2019, 9 (22).
https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201803970
8. Yang, L.; Xu, H.; Liu, H.; Cheng, D.*; Cao, D. *, Active Site Identification and Evaluation Criteria of In Situ Grown CoTe and NiTe Nanoarrays for Hydrogen Evolution and Oxygen Evolution Reactions. Small Methods 2019, 3 (5).
https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.201900113
7. Zhang, J.; Xu, X.; Yang, L.; Cheng, D.*; Cao, D. *, Single‐Atom Ru Doping Induced Phase Transition of MoS2 and S Vacancy for Hydrogen Evolution Reaction. Small Methods 2019, 3 (12).
https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.201900653
6. Yang, Y.; Xu, H.; Cao, D. *; Zeng, X. *; Cheng, D.*, Hydrogen Production via Efficient Formic Acid Decomposition: Engineering the Surface Structure of Pd-Based Alloy Catalysts by Design. ACS Catalysis 2019, 9 (1), 781-790.
https://pubs.acs.org/doi/10.1021/acscatal.8b03485
5. Huang, Y.; Hu, J.; Xu, H.; Bian, W.; Ge, J.; Zang, D.; Cheng, D.*; Lv, Y.; Zhang, C.; Gu, J.; Wei, Y., Fine Tuning Electronic Structure of Catalysts through Atomic Engineering for Enhanced Hydrogen Evolution. Advanced Energy Materials 2018, 8 (24), 1800789.
https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201800789
4. Wang, Z.; Li, Q.; Xu, H.; Dahl-Petersen, C.; Yang, Q.; Cheng, D.; Cao, D.; Besenbacher, F.; Lauritsen, J. V.; Helveg, S.; Dong, M. *, Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano energy 2018, 49, 634-643.
https://www.sciencedirect.com/science/article/pii/S2211285518302970
3. Xu, H.; Cheng, D.*; Gao, Y. *; Zeng, X. C. *, Assessment of Catalytic Activities of Gold Nanoclusters with Simple Structure Descriptors. ACS Catalysis 2018, 8 (10), 9702-9710.
https://pubs.acs.org/doi/10.1021/acscatal.8b02423
2. Xu, H.; Cheng, D.*; Gao, Y. *, Design of High-Performance Pd-Based Alloy Nanocatalysts for Direct Synthesis of H2O2. ACS Catalysis 2017, 7 (3), 2164-2170.
https://pubs.acs.org/doi/10.1021/acscatal.6b02871
1. Cheng, D.; Lan, J.; Cao, D. *; Wang, W, Adsorption and dissociation of ammonia on clean and metal-covered TiO2 rutile (1 1 0) surfaces: A comparative DFT study. Applied Catalysis B: Environmental 2011, 106 (3-4), 510-519.
http://doi.org/10.1016/j.apcatb.2011.06.010